Regularisation, interpolation and visualisation of diffusion tensor images using non-Euclidean statistics

نویسندگان

  • Diwei Zhou
  • Ian L. Dryden
  • Alexey A. Koloydenko
  • Koenraad M.R. Audenaert
  • Li Bai
چکیده

Practical statistical analysis of diffusion tensor images is considered, and we focus primarily on methods that use metrics based on Euclidean distances between powers of diffusion tensors. First we describe a family of anisotropy measures based on a scale invariant power-Euclidean metric, which are useful for visualisation. Some properties of the measures are derived and practical considerations are discussed, with some examples. Second we discuss weighted Procrustes methods for diffusion tensor interpolation and smoothing, and we compare methods based on different metrics on a set of examples as well as analytically. We establish a key relationship between the principal-square-root-Euclidean metric and the size-and-shape Procrustes metric on the space of symmetric positive semi-definite tensors. We explain, both analytically and by experiments, why the size-and-shape Procrustes metric may be preferred in practical tasks of interpolation, extrapolation, and smoothing, especially when observed tensors are degenerate or when a moderate degree of tensor swelling is desirable. Third we introduce regularisation methodology, which is demonstrated to be useful for highlighting features of prior interest and potentially for segmentation. Finally, we compare several metrics in a dataset of human brain diffusion-weighted MRI, and point out similarities between several of the non-Euclidean metrics but important differences with the commonly used Euclidean metric.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation

Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...

متن کامل

Weighted Procrustes Analysis for Diffusion Tensor Imaging

There has been substantial interest in the development of methods for processing diffusion tensor fields, taking into account the non-Euclidean nature of the tensor space. In this paper, we generalise Procrustes analysis to weighted Procrustes analysis for diffusion tensor smoothing, interpolation, regularisation and segmentation in which an arbitrary number of tensors can be processed efficien...

متن کامل

Tensor Field Interpolation with PDEs

We present a unified framework for interpolation and regularisation of scalarand tensor-valued images. This framework is based on elliptic partial differential equations (PDEs) and allows rotationally invariant models. Since it does not require a regular grid, it can also be used for tensor-valued scattered data interpolation and for tensor field inpainting. By choosing suitable differential op...

متن کامل

Procrustes Analysis of Diffusion Tensor Data

Introduction: Diffusion tensor imaging (DTI) is becoming increasingly important in clinical studies of diseases such as multiple sclerosis and schizophrenia, and also in investigating brain connectivity. Hence, there is a growing need to process diffusion tensor (DT) images within a statistical framework based on appropriate mathematical metrics. However, the usual Euclidean operations are ofte...

متن کامل

Tradeoffs in Supersampling of DTI Metrics

Most tractography methods based on diffusion tensor images (DTIs) require repeated evaluation of tensors or tensor properties at locations not on the point lattice of measurements made during imaging [1]. Furthermore, computing tractwise statistics on scalar measures [2] may also require interpolation to such locations. The process of computing tensor measures comprises two stages: first comput...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015